Characterization of Properties of Laser Powder Bed Fusion 3D-Printed Inconel 718 for Centrifugal Turbomachinery Applications

Lea, H., Wooding, R., Kuhr, S., Rotella, J., and Córdova, J.L., “Characterization of Properties of Laser
Powder Bed Fusion 3D-Printed Inconel 718 for Centrifugal Turbomachinery Applications.” ASME Turbo Expo Technical Conference Proceedings (2022). https://doi.org/10.1115/GT2022-83474

This paper presents the results of a comprehensive effort to characterize the properties of Inconel 718 produced by a form of laser powder bed fusion (LPBF) additive manufacturing (AM) or 3D-printing, subsequently subjected to hot isostatic pressing (HIP) and heat treatment according to standards F3055-14a and AMS 5663, respectively. Material property data, while broadly available for traditional Inconel 718 presentations (e.g. forgings or castings), is currently lacking for the 3D-printed material.

It is expected that while limited in size, the experimental data sets presented provide sufficient information to glean the capability of LPBF Inconel 718. These include: 1) Chemical composition, electron backscatter diffraction (EBSD), and x-ray energy dispersive spectroscopy (XEDS) characterization of 3D-printed material structure; 2) Tensile properties — 0.2% yield stress, ultimate stress, modulus of elasticity, and elongation to failure — based on 108 samples, as functions of temperature and sample print orientation; 3) Creep rupture data including the Larson-Miller parameter, based on 21 samples; and 4) High cycle fatigue data based on 21 samples as a function of temperature.

Results are compared to available standards and/or data for forged, cast, and other AM Inconel 718. A key observation of this study, based on the EBSD results, is that while the material appears to approach full recrystallization following heat treatment, there is a detectable fraction of the material that does not fully recrystallize, resulting in a material with mechanical properties (e.g. yield stress, creep rupture) measurably lower than those of forgings, but higher than those of castings.